Version 1 March 11, 2013

Intro to the art-workbook

Rob Kutschke March 11, 2013

Introduction

- The art workbook uses a toy experiment to illustrate the features of art.
- Plan A: Phase I by May 1, 2013
 - Then ds50 came along ...
- Current status: a prototype
 - Some glitches
 - Some missing features
 - Written material exists only as stream-ofconsciousness bullet points.

Workbook

- What it will look like when it's done:
 - A series of exercises that people can work through on their own and at their own pace.
 - Backed by layered written documentation, a discussion forum ...
 - Main audience: the end-user scientist-analyzer
 - Additional material for the scientist-developer
- This week:
 - Due to early state of the written material, we will work through the exercises together.
 - Please ask lots of questions.

Products

- AKA External Products
- Examples:
 - ROOT, Geant4, CLHEP, boost
 - The g++ compiler!
- Experiments use art as just another product
 - Experiment specific code is built as plug-ins (.so)
 that are loaded and used by art.
 - Your "main program" is in an external product!

UPS/UPD

- Products are managed by ups/upd
 - FNAL home brew; battled-tested and modernized.
- Product path: echo \$PRODUCTS
 - /grid/fermiapp/products/common/db/:/ds50/app/products
- /grid/fermiapp/products/common/db
 - Some general tools, mostly FNAL specific.
- /ds50/app/products
 - The main body of products used by ds50
 - You can download a tar file of this area, untar it on your laptop and go (if your laptop runs a supported OS).

UPS Environment Variables

- When you "setup" a UPS product
 - Defines environment variables
 - May add to your path
 - May add to LD_LIBRARY_PATH
- Example environment variables:
 - ART DIR the root of the version of the product
 - ART_INC the root of include files for this version
 - ART_LIB location of libraries
 - ... usually more ...

The Toy Experiment

- Deployed as a product:
 - Name: art-workbook-base
 - You will use this an external product.
 - You will uses its header files and its libraries
 - Experts should feel free to look at the insides to learn things not covered by the workbook.
 - The mature workbook will eventually have exercises targeted at scientist-developers that tell you to check out art-workbook-base and modify it.
- art-workbook-base and art-workbook are not the same!

Big Picture

art-workbook

PRODUCTS: art-workbook-base Art ROOT CLHEP boost

- Source for art-workbook is stored in a source code management system: git
 - Think svn++ or cvs++++
- What you will do:
 - Check out the art-workbook
 - Build it
 - Run exercise 1
 - Modify some code, rebuild and rerun.
 - Repeat for exercise 2, 3, 4
 - You won't check in any code.

Establishing Working Environment

- A four step process:
- source /ds50/app/ds50/ds50.sh
 - Tells ups to where to find the ds50 products
- source /ds50/app/ds50/setup_workbook_tutorial.sh
 - Makes working space for the workbook project
 - Checks out the art-workbook project from git
- cd \$buildDir
- source ../art-workbook/ups/setup_for_development –d
 - "sets up" all ups products needed for the art-workbook project.
 - After this step the ups environment variables are defined; PATH and LD_LIBRARY_PATH are extended.

The Toy Experiment

- Simulation code produces
 - Truth information
 - Data-like raw data
 - Helpers to navigate among raw data and truth.
- Reconstruction and analysis code produces
 - Information derived from the raw data
 - Helpers to navigate the derived information
- Given both sets of helpers one can navigate from the final answer back to the simulated interaction and ask, "Did I get it right? If not what sort of error did I make?"
- Code is structured as "modules"
 - Each "module" does one step of the simulation process or one step of the reconstruction/analysis process.
 - Here "module" has no precise technical meaning it's just a bunch of code that works together and can be turned on or off.

The Toy Detector

15 concentric sensitive shells Uniform B Field: (0., 0., 1.5) T

Comments on Previous Slide

- 15 Shells
 - Inner 5: Closely spaced radially; short in z
 - Outer 10: Widely spaced radially; long in z
- All shells:
 - Make 2D measurements: (φ,z)
 - Perfectly gaussian
 - Perfect separation of nearby tracks
 - Efficiency and resolution: run-time configurable per shell.

Generated Particles: Event 1

(run: 1 subRun: 0 event: 1) Y vs X

(run: 1 subRun: 0 event: 1) R vs Z

One neutral particle: $m = m(\phi) = 1020$. MeV Decays immediately to K^+K^-

Comments on Previous Slide

- Phi meson generated uniform on 4pi, with momentum uniform from 0 to 2000 MeV/c.
- Decay is isotropic in rest frame.
- K⁺K⁻ are tracked through the detector
 - Never interact in the materials
 - Never decay
 - Travel in perfect helices
 - Only follow particle for the outgoing arc of the helix or until it leaves the detector, whichever comes first.
- Compute intersections of each trajectory with each shell:

Intersections

(run: 1 subRun: 0 event: 1) R vs Z

Intersections shown as filled circles.

K⁻ is outside of the fiducial volume.

(run: 1 subRun: 0 event: 4) Y vs X

(run: 1 subRun: 0 event: 4) R vs Z

Another typical event.

(run: 1 subRun: 0 event: 6) Y vs X

(run: 1 subRun: 0 event: 6) R vs Z

Both tracks go out the end.

(run: 1 subRun: 0 event: 9) Y vs X

(run: 1 subRun: 0 event: 9) R vs Z

The simulation code stopped tracking the blue track (K⁻) when it completed a full outgoing arc. Why? To reduce complexity for this toy example. 19

The Rest of the Story

• Simulation:

- Use the intersections to compute data-like hits.
- Make a helper to navigate back and forth between hits and intersections.

Reconstruction:

- Use the data-like hits to compute fitted tracks
 - Require minimum number of hits.
 - Prototype code uses MC truth. A later version will not.
- If both K⁺ and K⁻ are reconstructed, compute the invariant mass of the reconstructed K⁺K⁻ system.

The Final Plot

From 1000 generated events, 856 reconstructed.

Example Files

- The exercises in the workbook use 4 input files that contain simulated event-data.
 - They are distributed in art-workbook-base
- There are example log files, root files and pdf files in:
 - /ds50/data/user/kutschke/workbook-blessedoutputs/

Get Started!

- Logging in, etc
 - https://cdcvs.fnal.gov/redmine/projects/darksidepublic/wiki/Get Started
- Starting the workbook
 - https://cdcvs.fnal.gov/redmine/projects/darksidepublic/wiki/Working the Workbook
- Ask questions.